A: Confidence interval: tells you both location and precision of a statistic. a 95% interval includes all parameters for which p-value > 0.05 Many statistics:
estimate $\pm T_{prob} \times se$
T_{prob} is a quantile of the appropriate T distribution T_{prob} approx 2 for 95% interval unless df small
How quantiles are labelled: T_{prob} is the value (quantile) such that $P[T \leq T_{prob}] = prob$ so prob of the T distribution is less than or equal to the quantile For a 95% confidence interval, we need 2 T quantiles one has 2.5% probability below it other has 2.5% probability above it = 97.5% probability below it We need $T_{0.025}$ and $T_{0.975}$ for the appropriate degrees of freedom For a 99% interval, we need $T_{0.005}$ and $T_{0.995}$ These have 99% of the T distribution between them Often written as $T_{\alpha/2}$ and $T_{1-\alpha/2}$ for a $1 - \alpha\%$ confidence interval The T distribution is symmetrical, so $T_{0.025} = -T_{0.975}$ So sometimes see: $(-T_{0.975}, T_{0.975})$
95% interval includes 0, e.g., $(-2, 4) \Rightarrow$ p-value for test of $0 > 0.05$ 95% interval does not include 0, e.g., $(-2, -1)$ or $(3, 100) \Rightarrow$ p-value for test of $0 < 0.05$ 99% interval does not include $0 \Rightarrow$ p-value for test of $0 < 0.01$
B : Two schools of inference: Frequentist: parameters have fixed but unknown values Bayesian: parameters are random variables, so have a distribution
Confidence intervals are frequentist: The interval is random; it depends on random values (mean, se) Different samples give different confidence intervals Most include the true parameter; some do not. Don't know which is which Coverage is P[interval includes true but unknown parameter] Example: Calculate a 95% ci using estimate $\pm T_{quantile}$ se and get (5,10). How can you interpret this? Correct: The interval calculated by estimate $\pm T_{quantile}$ se has an 0.95 probability of including the true but unknown parameter technically Incorrect: claim P[parameter between 5 and 10] = 0.95 Because probabilities are properties of random variables. Parameter is not a random variable
Bayesian interval called a credible interval:

Allowed to talk about P[parameter between 5 and 10] or P[parameter > 0]

Different calculations, need additional information (the prior distribution), and lots more math but in almost all cases, can set up the problem so that the credible interval is exactly the same as the confidence interval So, I don't make a distinction you can interpret a confidence interval as a credible interval.
More methods for two-sample comparisons: Chapter 3: assumptions of t-test, methods to assess, transformations Chapter 4: alternatives to a t-test
C: Nonparametric test: third way to compare two groups First two were randomization test and T-test also called distribution-free test, we will ignore a subtle distinction do not assume a specific distribution
Why consider more methods? sometimes hard to use other methods: example: Case study 4.2 cognitive load study some values recorded as > 300 seconds - can't (easily) compute mean sometimes data violate assumptions: example hamburger E coli study one value of 2.5 cfu/gm; rest are 0.03 - 0.57 cfu/gm
Resistant method: results don't change when a small number of observations altered a lot median is resistant; mean is not
Wilcoxon rank-sum test: compares locations of two groups also called Mann-Whitney test or Mann-Whitney U test resistant to outliers only requires ranking observations, so > 300 is not an issue the test statistic is sum of ranks (or average rank) for one group extreme when that group tends to have all the largest obs. or all the smallest obs. get p-value by randomization (small n_1 or n_2) or approximation (large n_1 and n_2)
why resistant? Consider the hamburger data 2.5 in the control group is the largest value, gets rank 12 next largest value is 0.57 so 0.6 would get rank 12 and 1000 would get rank 12. change that value a lot and still have same sum of ranks for the control group Null hypothesis being tested: various ways to state this Practically useful version: H0: two groups have same median (or no diff. in medians) difficult to obtain CI for difference in medians. See someone in Stat if you need this.
Paired data nonparametric tests: based on difference within each pair (like paired T test) sign test: # positive differences (so value in trt $A >$ value in trt B)

sign test: # positive differences (so value in trt A > value in trt B)

ignores magnitude of the difference

only requires > or <; can use when can't compute the diff.'s, e.g., censored values Test based on # pairs with positive differences Wilcoxon signed rank test: includes size of the difference, not just + or -Details in the book - not relevant when both sign and signed rank tests are possible, signed rank test is more powerful \Leftrightarrow more likely to find a difference **D**: Review and comparisons of assumptions Assumptions of a randomization test: independence: observations randomly assigned to treatments, done individually one observation at at time or: two independent simple random samples Assumptions of a t-test: independence: observations randomly assigned to treatments, one at at time or: two independent simple random samples or: errors are independent errors have equal variances errors are normally distributed Assumptions of a Wilcoxon rank sum test: (various ways to describe them) independence: observations randomly assigned to treatments, one at at time or: two independent simple random samples or: errors are independent errors have the same distribution, perhaps after a transformation Model that leads to the equal variance T test: Notation: Observations, Y_{ji} are indexed by group j: A or B, and observation # within group, i. For group A $Y_{Ai} = \mu_A + \varepsilon_{Ai}, \quad \varepsilon_{Ai} \sim \text{independent } N(0, \sigma^2)$ For group B $Y_{Bi} = \mu_B + \varepsilon_{Bi}$, $\varepsilon_{Bi} \sim \text{independent } N(0, \sigma^2)$ Assumptions: model represents assumptions in words normally distributed: N()equal variances: $N(0, \sigma^2)$ (one variance for both groups), not $N(0, \sigma_A^2)$ and $N(0, \sigma_B^2)$ (each group has own variance)

assumptions concern errors

E: Errors and residuals

Errors: unknown population quantities error for observation Y_{Ai} : $\varepsilon_{Ai} = Y_{Ai} - \mu_A$

unknown because need μ_A (unknown pop. mean) to compute Residuals: estimates of the errors, called residuals, can be computed from data residual is $Y_{Ai} - \overline{Y}_A$ because estimate of μ_A is \overline{Y}_A
 F: Diagnosing concerns about assumptions: Goal: when is T-based inference reasonable? Answer: when assumptions are reasonable because then T distribution matches randomization distribution use residuals to assess assumptions Emphasize informal approaches, not statistical tests, no p-values
$ \begin{array}{l} \textbf{G: Equal variance: diagnosis} \\ \textbf{numeric: easiest with only two groups} \\ s_1 \ \text{sd in group 1; } s_2 \ \text{sd in group 2. } s_1 > s_2 \\ \frac{s_1}{s_2} \leq 2: \ \text{fine} \\ \frac{s_1}{s_2} \geq \sqrt{10} \approx 3.16: \ \text{concern about unequal variances} \\ \textbf{graphical:} \\ \textbf{plot residuals (Y axis) against predicted values (X axis)} \\ \textbf{predicted values for a two-group study are } \overline{Y}_A \ \text{and } \overline{Y}_B \\ \textbf{so residual vs predicted value plot has two columns of dots} \\ \textbf{look for unequal spreads} \\ \textbf{See plots from lecture:} \\ \textbf{simulated data sets with sd's equal (1:1), 1:2, and 1:3.16 } \end{array} $
 Treatment of outliers (Display 3.6): Don't just delete! Hamburger study: 2.5 cfu/gm is the most important value Book (and my) recommendations: Is there any error (in measurement, transcription,): fix Is that obs from a different population: focus on the majority, remove all obs from that minor population Analyze data with and without the "outliers": similar results, report with all obs different results, report both, probably emphasize one set. CONSORT diagram for flow of individuals through study